曲率 网络解释
百度百科
曲率
- 曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
- 曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
-----------------
wikipedia
平均曲率等于主曲率的算术平均数(k1+k2)/2。量纲为长度。平均曲率和曲面面积的第一变分密切相关。特别的,像肥皂膜这样的极小曲面平均曲率为0,而肥皂泡平均曲率为常数。不像高斯曲率,平均曲率依赖于嵌入,例如,圆柱和平面是局部等距的,但是平面的平均曲率为0,而圆柱的非零。
第二基本形式[编辑]
曲面的外在曲率与内在曲率可以在第二基本形式中结合起来。用符号来表示
其中
是曲面的单位法向量。对单位切向量 ,第二基本形式分别在主方向 处取得最大值 与最小值 。因此第二基本形式也可表示为
形状算子[编辑]
形状算子是与曲率相关的一个概念,是切空间到自身的线性算子。主曲率是形状算子的特征值,事实上形状算子与第二基本形式关于切平面的一对正交基的矩阵表示相同。于是高斯曲率等于形状算子的行列式,而平均曲率等于形状算子的迹的一半。
黎曼几何|多变量微积分|曲率
© 汉典